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Abstract
A relation between the correlation entropy and the correlation functions for the
general spin-1/2 systems is obtained. It is shown that the correlation entropy
catches some characters of correlation behavior and can be used to quantify the
quantum and finite-temperature phase transitions, including the infinite order
or topological ones. As an example, the Kosterlitz–Thouless transition in the
quantum two-dimensional XY model is investigated. The critical temperature
and the critical exponents are determined from the finite-size scaling analysis
of the correlation entropy.

PACS numbers: 03.67.Mn, 05.70.Fh, 05.70.Jk

1. Introduction

The interdisciplinary fields in condensed matter physics, quantum information and quantum
computation show many attractive phenomena. For example, quantum entanglement, as one
of the most fundamental concepts in quantum information theory, has been used to quantify
the phase transitions in condensed matter systems [1–12]. Osterloh et al [1] and Osborne
et al [2] found that the concurrence or its derivative of two sites with their nearest neighbor
shows a peak near or at the critical point, which can be used to identify the quantum phase
transition in spin systems. Gu et al [3] studied the local entanglement of single sites in a
fermionic system and found that the critical point corresponds to the maximum point of the
entanglement. Cao et al [4] showed that the partial entropy, which is the classical counterpart
of von Neumann entropy, has finite-size scaling behavior near the critical temperature and it
can be used to quantify the finite-temperature phase transitions in both the classical and the
quantum systems.

The Kosterlitz–Thouless (KT) transition [13, 14] is an important issue in the modern
theory of critical phenomena. This phase transition is an infinite order or topological one
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and exists in some interacting spin systems such as the 2D XY model. The 2D XY model
possesses the U(1) symmetry and a finite-temperature phase transition, but the expected
second-order one is destroyed by the transverse fluctuations. If the temperature is lower than
the critical temperature, the system has a phase with a power-law correlation. While if the
temperature is higher than the critical point, the system has a phase with the exponential
correlation. The 2D XY model can be physically realized in a 2D Josephson junction and has
been extensively studied [15–18]. For example, Doniach studied the quantum fluctuation in
2D Josephson junction array [15]. By using the Monte Carlo method, Jacobs et al studied
the coherence states in the periodic arrays of ultrasmall Josephson junction [16]. In terms of
real space renormalization group of topological excitations in the system, Williams [17], and
Chattopadhyay and Shenoy [18] found a 3D vortex-loop description of the KT transition.

To the KT transition, most of the entanglement measurements such as concurrence, local
entanglement and partial entropy are failed to describe. A good entanglement measurement
should catch the most essential feature of the phase transitions, i.e., the correlation behavior
near the critical point. In this paper, we study the correlation effects from the view of
entropy. We find that the correlation entropy catches some intrinsic characters of the phase
transitions and can be used to determine the critical points. Comparing with the correlation
function, the correlation entropy method has many advantages. For example, the correlation
entropy includes all kinds of correlation effects, the correlation entropy shows the finite-
size scaling behavior for the small systems, and it does not need the pre-assumed order
parameter.

In this work, we give a relation between the correlation entropy and the correlation
functions in the general spin-1/2 systems. Then, we derive the finite-size scaling law of the
correlation entropy. By using the stochastic series expansion (SSE) quantum Monte Carlo
(QMC) simulation with operator-loop update [19–21], we study the KT transition in quantum
2D XY model. From the finite-size scaling analysis of the correlation entropy, we obtain the
critical temperature and the critical exponents. Our results agree with the pervious ones.

The paper is organized as follows. In section 2, we derive the correlation entropy and its
the finite-size scaling law. In section 3, we show that the correlation entropy can be used to
quantify the KT transition. Section 4 is the summary.

2. Correlation entropy

In a many-body system, there exists interactions among the subsystems and the states of
subsystems are entangled with each other. The correlation functions are used to quantify the
correlation effects. Another important concept, correlation entropy, are suggested to quantify
the correlation effects from the entropy point of view [22–25]. The correlation entropy is
defined as

S(A : B) = SA + SB − SAB, (1)

where A and B are two subsystems in the real physical system, Sp = −tr(ρp log2 ρp) is
the partial entropy of subsystem p = A,B, ρp = trp̄ρ is the reduced density matrix of
subsystem p, trp̄ stands for tracing over all except the selected subsystem p and ρ is the
density matrix of the system. The correlation entropy measures the correlation intensity
between two subsystems. In the information theory, the correlation entropy is called the
mutual information [26, 27], which is a measure of quantum entanglement [28–30].

For a spin-1/2 system, the general form of single-site reduced density matrix is

ρi = 1
2

(
I +

〈
σx

i

〉
σx

i +
〈
σ

y

i

〉
σ

y

i +
〈
σ z

i

〉
σ z

i

)
, (2)
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where I is the identity matrix and σα
i (α = x, y, z) are the Pauli matrices at the site i. From

the eigen equation∣∣∣∣∣ λ − 1
2

(
1 +

〈
σ z

i

〉)
1
2

(
i
〈
σ

y

i

〉 − 〈
σx

i

〉)
− 1

2

(
i
〈
σ

y

i

〉
+

〈
σx

i

〉)
λ − 1

2

(
1 − 〈

σ z
i

〉)
∣∣∣∣∣ = 0, (3)

we obtain the eigenvalues of the reduced density matrix (2) as λ1,2 = (1 ± r)/2, where

r = (〈
σx

i

〉2
+

〈
σ

y

i

〉2
+

〈
σ z

i

〉2)1/2
. The partial entropy of subsystem i is Si = −∑2

n=1 λn log2 λn,
which can also be written as

Si = 1 − 1

2 ln 2
(1 + r) ln(1 + r) − 1

2 ln 2
(1 − r) ln(1 − r). (4)

The quantity Si measures the correlation between the subsystem i and the rest of the system.
Using the relation of power-series expansion, ln(1 + x) = x − x2/2 + · · · + (−1)n+1xn/n +
. . . ,−1 < x � 1, we have

Si = 1 − 1

ln 2

∞∑
n=1

r2n

(2n − 1)2n

= 1 − 1

2 ln 2

∑
α=x,y,z

〈
σα

i

〉2 − 1

12 ln 2

( ∑
α=x,y,z

〈
σα

i

〉2)2

+ o(〈· · ·〉6), (5)

where o(〈· · ·〉6) represents the correlation functions with terms of powers larger than or equal
to the sixth order. The odd-power terms do not appear in equation (5).

The general form of two-site reduced density matrix ρij for a spin-1/2 system is

ρij = 1

4
I +

1

4

∑
α;l=i,j

〈
σα

l

〉
σα

l +
1

4

∑
αβ

〈
σα

i σ
β

j

〉
σα

i σ
β

j , (6)

which is a 4 × 4 matrix. The elements of reduced density matrix (6) are

a11 = 1
4

(
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σ z

i σ z
j

〉
+

〈
σ z

i
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+

〈
σ z

j
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,
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4
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4
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,

a13 = 1
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,

a14 = 1
4
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,

a23 = 1
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,
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,

a21 = a∗
12, a31 = a∗

13, a41 = a∗
14,

a32 = a∗
23, a42 = a∗

24, a43 = a∗
34.

(7)

The eigenvalues of the reduced density matrix (6) should satisfy the eigen equation

|λδmn − amn| = 0, (8)

which can be simplified as

λ4 + a3λ
3 + a2λ

2 + a1λ + a0 = 0, (9)
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where a0,1,2,3 are the coefficients and determined by equation (8). The partial entropy of
two-site subsystem is

Sij = −
4∑

n=1

λn log2 λn

= 2 − 1

8 ln 2

4∑
n=1

[
(1 − 4λn)

2 +
1

3
(1 − 4λn)

3 + o((1 − 4λn)
4)

]
. (10)

From the relations between the coefficients and the roots of equation (9),

a1 = −
∑

n�=m�=l

λnλmλl, a2 =
∑
n�=m

λnλm, a3 = −
∑

n

λn, (11)

we have ∑
n

(1 − 4λn)
2 = 16a2

3 − 32a2 + 8a3 + 4,

∑
n

(1 − 4λn)
3 = 64a3

3 + 48a2
3 − 192a2a3 + 12a3 − 96a2 + 192a1 + 4.

(12)

Considering the fact that the trace of density matrix is 1, we have
∑

n λn = 1. From the eigen
equation (8), we obtain

a1 = − 1

16
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〈
σα

i σ
β

j
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β
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〉
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3
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β
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β
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,

a2 = 1

16

[
6 − 2

∑
α;l=i,j

〈
σα

l

〉2 − 2
∑
αβ

〈
σα

i σ
β

j

〉2]
,

a3 = −1,

(13)

where α, β = x, y, z and l = i, j .
From equations (5), (10), (12) and (13), we obtain the correlation entropy between two

sites i and j as

S(i : j) = 1

2 ln 2

∑
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〈
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2 ln 2
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〉 − 2

3

〈
σα
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β

j
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β

i σ
γ

j

〉〈
σ
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j

〉

− 1

3

〈
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i σ α
j

〉〈
σ

β

i σ
β
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〉〈
σ
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i σ
γ

j

〉)]
+ o(〈· · ·〉4). (14)

Equation (14) indicates that the correlation entropy are the summation of the correlation
functions with terms of powers larger than or equal to the second order.

To the spin-1/2 systems, the maximum of correlation functions with two nearest neighbor
sites is 1/4. Furthermore, the values of correlation functions are decreasing with the increasing
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distances between two sites. Therefore, the correlation functions between two sites with the
longest distance are small. These ensure that the values of nth power of correlation functions
are larger than that of (n+ 1)th power, and the square terms are much larger than the nth power
terms. To some systems such as the 2D quantum XY model which will be demonstrated in
the following section, the contributions of second-order correlations to the correlation entropy
(14) are much larger than that of the third and higher order correlations. In this case, the
second-order correlations are the dominant terms and the higher order correlations are the
correction to the results. (Please see table 1.)

Generally, near the critical temperature, the universal scaling law of the correlation
function takes the following form:

C(r) ∼ r−p e−r/ξ , (15)

where r = |i − j | is the distance between two sites, p is the power exponent and ξ is the
correlation length, which is a function of temperature T. The critical behavior of ξ is described
by its critical exponent ν usually in the following form:

ξ ∼ |t |−ν, (16)

where t = (T − Tc)/Tc is the reduced temperature and Tc is the critical temperature. At the
critical point Tc, the correlation length tends to infinity, which means that e−r/ξ → 1 for any
distance r. Thus the correlation function takes the form of

C(r) ∼ 1/rp ≡ 1/rd−2+η, (17)

where d is the dimension of the system and η is the critical exponent of the correlation function,
which describes the decaying behavior of correlation effects with respect to the spatial distance
r. At the critical point, the decay of correlation function is very slow. One character of the
phase transition is that the correlation length is infinity at the critical point, while keeps a finite
value at other points.

Close to the critical point, the entropy correlation length ζ is defined by

S(0 : r) ∼ r−qe−r/ζ , (18)

where q is the power exponent. The ζ is the characteristic length of the entropy correlation
effects, and it describes the length scale of correlation between two subsystems from the view
of entropy. Close to the critical point, the entropy correlation length keeps a finite value
then the decay of the correlation entropy satisfies the exponential law, where the leading term
is e−r/ζ . While at the critical point, the entropy correlation length tends to infinity and the
decay of the correlation entropy satisfies the power law, where the leading term is 1/rd−2+δ

and δ is the critical exponent of the correlation entropy. Therefore, the correlation entropy
catches some intrinsic characters of the phase transitions and can be used to determine the
phase transition points. Moreover, because the correlation entropy is a reasonable combination
of correlation effects, the correlation entropy should have its own scaling behavior near the
critical point.

3. The KT phase transition

We consider the 2D quantum XY model defined by the Hamiltonian

H = −J
∑
〈i,j〉

(
Sx

i Sx
j + S

y

i S
y

j

)
, (19)

where J is the coupling constant, Sx
i

(
S

y

i

)
is the spin-1/2 operator along the x(y) direction at

site i on a 2D L×L square lattice in space. We use the periodic boundary conditions. It is well
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Table 1. The contributions of the second- and fourth-order correlations to the correlation entropy,
where T = 0.35 (left) and T = 0.40 (right).

L γ 2
x

2
3 γ 4

x Ratio L γ 2
x

2
3 γ 4

x Ratio

10 0.160 19 0.017 11 0.106 80 10 0.133 55 0.011 89 0.089 03
12 0.149 13 0.014 83 0.099 42 12 0.120 54 0.009 69 0.080 36
16 0.133 01 0.011 80 0.088 68 16 0.102 00 0.006 94 0.068 00
20 0.121 28 0.009 81 0.080 85 20 0.088 01 0.005 16 0.058 67
24 0.113 14 0.008 53 0.075 43 24 0.077 81 0.004 04 0.051 87
28 0.106 62 0.007 58 0.071 08 28 0.070 14 0.003 28 0.046 76
32 0.101 16 0.006 82 0.067 44 32 0.063 22 0.002 66 0.042 15

known that the model (19) has a KT transition at the critical point TKT = 0.34J/kB [31–33],
where kB is the Boltzmann constant. In the following, J and kB are set to 1. At the critical
point, the decay of correlation length of the KT transition satisfies the exponential law, instead
of the usual power type (16). The thermodynamical quantities do not show any singularity
at the critical temperature. Several quantities have been used to study this transition such
as the superfluid density or equivalently the helicity modulus [33], correlation function and
susceptibility [31, 32]. In this paper, we use the correlation entropy.

From the symmetry analysis, we obtain the two-site reduced density matrix as

ρij = 1

4
I +

∑
α

γαSα
i Sα

j , (20)

with α = x, y, z and γα = 4
〈
Sα

i Sα
j

〉
. The value of correlation function along the z-direction

is not zero, although the Hamiltonian (19) does not include this kind of terms. The reduced
density matrix ρij can be diagonalized with the eigenvalues

λ1,2 = 1
4 (1 + γz ± (γx − γy)), λ3,4 = 1

4 (1 − γz ± (γx + γy)). (21)

The single-site reduced density matrix is the unit matrix with the coefficient 1/2, and the
partial entropy of a single site is 1. Then we obtain the correlation entropy as

S(i : j) = 2 +
4∑

n=1

λn log2 λn. (22)

The correlation entropy (22) can also be written as

S(i : j) = 1

2 ln 2

∑
α

γ 2
α +

1

ln 2
γxγyγz +

1

12 ln 2

⎡
⎣∑

α

γ 4
α + 3

∑
α �=β

γ 2
α γ 2

β

⎤
⎦ + o(〈· · ·〉5). (23)

From equation (23), we see that the third-order correlations are the productions of correlation
functions along the x, y and z directions. In the 2D XY model, the correlation functions
along the x and y directions are equal, and they are much larger than that along the z-
direction,

〈
Sx

i Sx
j

〉 = 〈
S

y

i S
y

j

〉 	 〈
Sz

i S
z
j

〉
. Thus the third-order correlations are infinitesimal and

equation (23) becomes

S(i : j) = 1

ln 2

(
γ 2

x +
2

3
γ 4

x

)
+ o(〈· · ·〉5). (24)

We list the contributions of the second- and fourth-order correlations to the correlation
entropy (24) in the table 1. From it, we see that the contributions of the second-order terms
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are much larger than that of the fourth-order terms. Furthermore, the ratio of fourth-order
terms to second-order terms is decreasing with the increasing system size and the increasing
distance between two sites. For example, the ratio is about 0.08 for the case of L = 10, and is
about 0.04 for the case of L = 32, where the temperature T = 0.4. Therefore, it is reasonable
to neglect the fourth and higher order terms.

For a L × L system with the periodic boundary condition and near the critical point, we
assume that the correlation entropy S(0 : r) and the corresponding entropy correlation length
ζ have the following finite-size scaling behavior:

SL(r) = A

[
r−δD

(
r

ζ

)
+ (L − r)−δD

(
L − r

ζ

)]
, (25)

ζ = A′ exp

(
B√

T − Tc

)
, T → T +

c , (26)

where S(r) ≡ S(0 : r). Below the critical point, the system (19) has the quasi-long-range
order and the ζ is always infinity. At the critical point, the entropy correlation length ζ is
exponential divergence (26). In [31], the correlation function with different distances are
calculated to extract the correlation length, which requires that the system size is very large.
Here, in order to see the entropy correlation effects more clearly, we consider the correlation
entropy of two sites with the longest distances �r = (L/2, L/2) for the different system sizes
L × L. From equation (25), the correlation entropy S[(0, 0) : (L/2, L/2)] ≡ S(L/2) has the
scaling form of

S(L/2) ∼ L−δG(L/ζ ), (27)

where G(x) is the universal function. At the critical temperature, the entropy correlation
length tends to infinity and G(0) is a constant which does not depend on the system size L.
We have

S(L/2) ∼ L−δ, T = Tc. (28)

Equations (26)–(28) are the main scaling laws of the correlation entropy for the KT
transition.

Now, we calculate the correlation entropy by the QMC simulation, where the SSE method
with operator-loop update [19–21] is used. The SSE method is based on the exact power-
series expansion of e−βH without any systematic errors, where β = 1/T . To construct the
configuration space of SSE, we rewrite the Hamiltonian (19) as

H = −
M∑

b=1

(H1b + H2b + H3b), (29)

where b is the bond connecting two spins with nearest neighbor and M = 2L2. The partition
function of the system can be expanded as

Z =
∑

α

∑
sN

βn(N − n)!

N !
〈α|

N∏
i=1

Hai,bi
|α〉, (30)

where {|α〉} is a complete set of the basis, N is the truncation, sN is a sequence of operator
indices

sN = [a1, b1][a2, b2] · · · [aN, bN ], (31)

with ai ∈ {1, 2, 3}, bi ∈ {1, . . . , M} or [ai, bi] = [0, 0] and n is the total number of operators
with non-[0, 0] indices. The sampling schemes are developed according to the operator’s
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Figure 1. The correlation entropy for different system sizes versus the temperature. We see that
the correlation entropy does not have any singularity in the temperature region 0.25 < T < 0.45.

relative weight in the partition function (30). The correlation between two diagonal operators
D̂1 and D̂2 is quantified by

〈D̂1D̂2〉 =
〈

1

n + 1

n∑
k=0

d1[k]d2[k]

〉
, (32)

where di[k] = 〈α(k)|D̂i |α(k)〉 and |α(k)〉 ∼ ∏k
i=1 Hai,bi

|α〉. When calculating the transverse
correlation functions

〈
Sx

i Sx
j

〉
, it is convenient to choose the basis |α〉 as the eigenstate of Sx

and the decomposition of Hamiltonian (19) is

H1b = C + Sx
i(b)S

x
j (b),

H2b = 1
4

(
S+

i(b)S
+
j (b) + S−

i(b)S
−
j (b)

)
,

H3b = 1
4

(
S+

i(b)S
−
j (b) + S−

i(b)S
+
j (b)

)
,

(33)

where S±
j = S

y

j ± iSz
j are the spin-flipped operators along the x-direction at the site j . The

constant C is chosen to ensure a positive weight of H1b in the expansion of the partition function.
While when calculating the correlation function

〈
Sz

i S
z
j

〉
, |α〉 is chosen as the eigenstate of Sz

and the decomposition the Hamiltonian (19) is simple. H = −∑M
b=1(H1b + H2b), where

H1b = C,H2b = (
S̃+

i(b)S̃
−
j (b) + S̃−

i(b)S̃
+
j (b)

)/
4 and S̃±

j = Sx
j ± iSy

j are the spin-flipped operators
in the z-direction at the site j .

The results are the following. The correlation entropy S(L/2) for the system sizes
L = 8 − 32 versus the temperature is shown in figure 1. From it, we see that the correlation
entropy does not have any singularity in the temperature region 0.25 < T < 0.45. The
finite-size scaling behavior of the correlation entropy is shown in figure 2. We find that the
data from L = 10 to L = 32 fall on a single curve while the data for L = 8 depart from that
curve. Thus, the system enters the scaling region only in the case of L � 10. From figure 2,
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Figure 2. The finite-size scaling behavior of the correlation entropy. All the data from L = 10 to
L = 32 fall on a single curve. The data for L = 8 does not satisfy the scaling law. Therefore, the
system enters the scaling region only in the case of L � 10.

Figure 3. The finite-size scaling behavior of correlation entropy at the critical temperature Tc.
The data for L = 10 − 32 are fit as a straight line with the slope 0.53(6), which agrees with
equation (28). The data for L = 8 is slightly above the line, which means that the system does not
enter the scaling region at that size.

we also obtain the critical temperature and the critical exponents as

Tc = 0.348 ± 0.002,

δ = 0.490 ± 0.003,

ζ ∼ exp(1.15/
√

T − Tc).

(34)

At the critical temperature, the curve of correlation entropy S(L/2) versus the system-size
scaling L−δ is a straight line, which is shown in figure 3. The data for L = 8 is slightly above
the line, which means that the correlation entropy does not enter the scaling region at that
system size. At the critical point, the correlation function satisfies C(L/2) ∼ L−η with the
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critical exponent η = 0.249(76) [31], while the correlation entropy gives S(L/2) ∼ L−δ

with the critical exponent δ = 0.49. Comparing δ and η, we find that the critical exponent
of correlation entropy is approximately twice as large as the critical exponent of correlation
function, δ ≈ 2η, which consists with the analytic results (24).

All these results agree with the previous studies on the KT transition [31–33]. For
example, in [31] the correlation functions with different distances r are calculated and gives
the critical temperature as Tc = 0.353(3). In [32], from the calculation of the susceptibility,
the critical temperature is obtained as Tc = 0.3433. In [33], by using the high accurate QMC
simulation and the helicity modulus, the critical temperature is determined as Tc = 0.3422.

4. Summary

In summary, we show that the correlation entropy can be used as a measure to quantify the
quantum and finite-temperature phase transitions. We obtain a relation between the correlation
entropy and the correlation function for the general spin-1/2 systems. We find that the entropy
correlation length is approximately half of the correlation length if the third and higher order
correlations can be neglected. This method has many advantages and is valid for the topological
phase transitions. As an example, the KT transition in the quantum 2D XY model is studied.
The critical temperature and the critical exponents are determined from the finite-size scaling
analysis of the correlation entropy. We hope some hidden phase transitions and quantum
coherence can be found by this method.
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